Heavy quarkonia at finite temperature: The EFT approach

Jacopo Ghiglieri
Technische Universität München
Joint CATHIE-TECHQM Workshop 12/17/09

Outline

- Motivation
- Introduction to Effective Field Theories at T=0
- The EFT approach for quarkonia at finite temperature
- Conclusions

Motivations

- Over the past two decades many Effective Field Theories of QCD have been developed
 - ChPT for the study of low-energy hadronic physics
 - Non-Relativistic QCD / potential NRQCD for heavy quarkonium physics
 - SCET for jet physics
 - At finite T EQCD/MQCD, HTL

•

Goal

- Our goal is then to extend the wellestablished T=0 EFT formalism for heavy quarkonia to the finite temperature situation
 - EFT help understanding and disentangling contribution from the various scales
 - Systematic, non model-based approach to the potential

• EFTs prove to be a valuable tool for physical problems characterized by various sufficiently separated energy/momentum scales

- EFTs prove to be a valuable tool for physical problems characterized by various sufficiently separated energy/ momentum scales
- An EFT is constructed by integrating out modes of energy and momentum larger than the cut-off $~\mu \ll \Lambda$

- EFTs prove to be a valuable tool for physical problems characterized by various sufficiently separated energy/momentum scales
- An EFT is constructed by integrating out modes of energy and momentum larger than the cut-off $~\mu \ll \Lambda$

$$\mathcal{L}_{\mathrm{EFT}} = \sum_{n} c_{n} (\mu/\Lambda) \frac{O_{n}}{\Lambda d_{n} - 4}$$
 Low-energy operator/Wilson coefficient large scale

- EFTs prove to be a valuable tool for physical problems characterized by various sufficiently separated energy/ momentum scales
- An EFT is constructed by integrating out modes of energy and momentum larger than the cut-off $~\mu \ll \Lambda$

$$\mathcal{L}_{ ext{EFT}} = \sum_{n} c_n (\mu/\Lambda) rac{O_n}{\Lambda^{d_n-4}}$$
 Low-energy operator/Wilson coefficient large scale

• The Wilson coefficient are obtained by matching appropriate Green functions in the two theories

- EFTs prove to be a valuable tool for physical problems characterized by various sufficiently separated energy/momentum scales
- An EFT is constructed by integrating out modes of energy and momentum larger than the cut-off $~\mu \ll \Lambda$

$$\mathcal{L}_{ ext{EFT}} = \sum_{n} c_n (\mu/\Lambda) rac{O_n}{\Lambda^{d_n-4}}$$
 Low-energy operator/Wilson coefficient large scale

- The Wilson coefficient are obtained by matching appropriate Green functions in the two theories
- The procedure can be iterated $\ldots \ll \mu_2 \ll \Lambda_2 \ll \mu_1 \ll \Lambda_1$

T=0 NR EFTs: a short intro

 $Q\overline{Q}$

T=0 NR EFTs: a short intro

• Non-relativistic $Q\overline{Q}$ bound states are characterized by the hierarchy of the mass, energy and momentum scales

T=0 NR EFTs: a short intro

- Non-relativistic $Q\overline{Q}$ bound states are characterized by the hierarchy of the mass, energy and momentum scales
- One can then expand observables in terms of the ratio of the scales and construct a *hierarchy of EFTs* that are equivalent to QCD orderby-order in the expansion parameter

m

$$mv \sim \frac{1}{r}$$

 $mv^2 \sim E$

m

Integration of the mass scale:
NRQCD

$$mv \sim \frac{1}{r}$$

$$mv^2 \sim E$$

$$-mv \sim \frac{1}{r}$$

Integration of the soft (momentum transfer) scale: pNRQCD

$$mv^2 \sim E$$

Weakly coupled pNRQCD

$$\mathcal{L} = \operatorname{Tr}\left[\frac{S^{\dagger}\left(i\partial_{0} - \frac{\mathbf{p}^{2}}{m} - V_{s}\right)S + O^{\dagger}\left(iD_{o} - \frac{\mathbf{p}^{2}}{m} - V_{0}\right)O\right]$$
$$+gV_{A}(r)\operatorname{Tr}\left[O^{\dagger}\mathbf{r}\cdot\mathbf{E}S + S^{\dagger}\mathbf{r}\cdot\mathbf{E}O\right] + g\frac{V_{B}(r)}{2}\operatorname{Tr}\left[O^{\dagger}\mathbf{r}\cdot\mathbf{E}O + O^{\dagger}O\mathbf{r}\cdot\mathbf{E}\right] + \dots$$

- Degrees of freedom: $Q\overline{Q}$ states with energy $E \sim \Lambda_{QCD}, mv^2$ and momentum $p \lesssim mv$ Singlet and octet color states
- US gluons with energy/momentum $\lesssim mv$
- Expansion in α_s , $\frac{1}{m}$ and r
- Potential is a Wilson coefficient, receives contributions from all higher scales

Thermodynamical scales

- The thermal medium introduces new scales in the physical problem
 - The temperature
 - The electric screening scale (Debye mass)
 - The magnetic screening scale (magnetic mass)
- In the weak coupling assumption these scales develop a hierarchy

Thermodynamical scales

• The thermal medium introduces new scales in the physical problem

T-

- The temperature
- The electric screening scale (Debye mass) $gT \sim m_D$
- The magnetic screening scale (magnetic mass)
 - $g^2T \sim m_m$

• In the weak coupling assumption these scales develop a hierarchy

$$-mv \sim rac{1}{r}$$

$$mv^2 \sim E$$

m

-
$$mv \sim rac{1}{r}$$

$$mv^2 \sim E$$
 Λ_{QCD}

- In our work various possibilities have been studied, from $T \ll E$ to $m \gg T \gg 1/r \sim m_D$
- In the regime $T \gg \frac{1}{r} \sim m_D$ we reobtain the result of Laine et al 2007

• Here we illustrate the intermediate case $m\gg 1/r\gg T\gg m_D\gg E$ Brambilla JG Petreczky Vairo 2008

- In our work various possibilities have been studied, from $T \ll E$ to $m \gg T \gg 1/r \sim m_D$
- In the regime $T \gg \frac{1}{r} \sim m_D$ we reobtain the result of Laine et al 2007

$$V_{\rm HTL}(r) = -\alpha_s C_F \left(\frac{e^{-m_D r}}{r} - i \frac{2T}{m_D r} f(m_D r) \right)$$

Here we illustrate the intermediate case

$$m \gg 1/r \gg T \gg m_D \gg E$$

Brambilla JG Petreczky Vairo 2008

$mv \sim$ $gT \sim m_D$ $mv^2 \sim E$

Mass scale

- QCD \Rightarrow NRQCD
- We only consider the leading $term \left(\frac{1}{m}\right)^0$, corresponding to treating heavy quarks/ antiquarks as static sources
- So far everything goes exactly as in the T=0 case Caswell Lepage 86

m $mv \sim$ $gT \sim m_D$ $-mv^2 \sim E$ Λ_{QCD}

Mass scale

Soft scale

- NRQCD \Rightarrow pNRQCD
- Integrating out the soft modes causes the singlet and octet potentials to appear

Pineda Soto 98 Brambilla Pineda Soto Vairo 99

Soft scale

The static potential

$$V_{s}(r,\mu) = -C_{F} \frac{\alpha_{V_{s}}(1/r)}{r}$$

$$= -C_{F} \frac{\alpha_{s}(1/r)}{r} \left\{ 1 + \frac{\alpha_{s}(1/r)}{4\pi} a_{1} + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{2} a_{2} + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{3} \left[\frac{16\pi^{2}}{3} C_{A}^{3} \ln r\mu + a_{3} \right] + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{4} \left[a_{4}^{L2} \ln^{2} r\mu + \left(a_{4}^{L} + \frac{16}{9}\pi^{2} C_{A}^{3} \beta_{0}(-5 + 6\ln 2) \right) \ln r\mu + a_{4} \right] + \cdots \right\}$$

Fischler 77 Peter 97 Schröder 99 Brambilla et al. 03/08 Sumino et al. 2009 Steinhauser et al. 2009

The temperature

- First thermal corrections to the potential (power law)
- Corrections appear as loops in the effective theory
- Real and imaginary parts, contributing to energy and decay width observables

Re
$$\delta V_s(r) = \frac{\pi}{9} N_c C_F \alpha_s^2 r T^2 \qquad \sim g^2 r^2 T^3 \times \frac{V}{T}$$

• The imaginary part correspond to singlet-to-octet thermal breakup

Re
$$\delta V_s(r) = -\frac{3}{2}\zeta(3) C_F \frac{\alpha_s}{\pi} r^2 T m_D^2$$

 $+\frac{2}{3}\zeta(3) N_c C_F \alpha_s^2 r^2 T^3 \sim g^2 r^2 T^3 \times \left(\frac{m_D}{T}\right)^2$

Im
$$\delta V_s(r) = +\frac{C_F}{6}\alpha_s r^2 T m_D^2 \left(\frac{1}{\epsilon} + \gamma_E + \ln \pi - \ln \frac{T^2}{\mu^2} + \frac{2}{3} - 4\ln 2 - 2\frac{\zeta'(2)}{\zeta(2)}\right)$$

 $+\frac{4\pi}{9}\ln 2 N_c C_F \alpha_s^2 r^2 T^3$
 $\sim g^2 r^2 T^3 \times \left(\frac{m_D}{T}\right)^2$

$$\operatorname{Re} \delta V_{s}(r) = -\frac{3}{2}\zeta(3) C_{F} \frac{\alpha_{s}}{\pi} r^{2} T m_{D}^{2} + \frac{2}{3}\zeta(3) N_{c} C_{F} \alpha_{s}^{2} r^{2} T^{3} \sim g^{2} r^{2} T^{3} \times \left(\frac{m_{D}}{T}\right)^{2}$$

$$\operatorname{Im} \delta V_{s}(r) = +\frac{C_{F}}{6}\alpha_{s} r^{2} T m_{D}^{2} \left(\frac{1}{\epsilon}\right) + \gamma_{E} + \ln \pi - \ln \frac{T^{2}}{\mu^{2}} + \frac{2}{3} - 4 \ln 2 - 2 \frac{\zeta'(2)}{\zeta(2)}\right) + \frac{4\pi}{9} \ln 2 N_{c} C_{F} \alpha_{s}^{2} r^{2} T^{3} \times \left(\frac{m_{D}}{T}\right)^{2}$$

$$\sim g^{2} r^{2} T^{3} \times \left(\frac{m_{D}}{T}\right)^{2}$$

$$-m - m - m \sim \frac{1}{r}$$
 $-T - T$
 $-gT \sim m_D$
 $-mv^2 \sim E$

The Debye mass

- After having integrated out the temperature Hard Thermal Loop contributions have to be resummed, giving the longitudinal gluon propagator a mass and and imaginary part
- This contribution cancels the divergence in the previous expression

Re
$$\delta V_s(r) \sim g^2 r^2 T^3 \times \left(\frac{m_D}{T}\right)^3$$

Im
$$\delta V_s(r) = -\frac{C_F}{6} \alpha_s r^2 T m_D^2 \left(\frac{1}{\epsilon} - \gamma_E + \ln \pi + \ln \frac{\mu^2}{m_D^2} + \frac{5}{3} \right)$$

 The real part is suppressed but the imaginary part indeed cancels the divergence

Re
$$\delta V_s(r) \sim g^2 r^2 T^3 \times \left(\frac{m_D}{T}\right)^3$$

Im
$$\delta V_s(r) = \frac{C_F}{6} \alpha_s r^2 T m_D^2 \left(\frac{1}{\epsilon} - \gamma_E + \ln \pi + \ln \frac{\mu^2}{m_D^2} + \frac{5}{3} \right)$$

 The real part is suppressed but the imaginary part indeed cancels the divergence

Summing up

- Divergences cancel out in the final result
- The real part of the potential is given by the Coulombic potential plus power-law thermal corrections
- The imaginary part of the static potential gives the decay width, which has two origins: singlet-to-octet breakup and Landau damping. The former is suppressed by $\left(\frac{E}{m_D}\right)^2$ vs the latter

Conclusions

- We have shown how to employ the EFT approach to deal with a problem characterized by various separated energy scales
- We have obtained new result in the intermediate regime $m\gg 1/r\gg T\gg m_D\gg E$ which could be relevant for LHC phenomenology
- We have introduced a new mechanism of thermal decay

Backup

The energy

$$E_{0}(r) = -\frac{C_{F}\alpha_{s}(1/r)}{r} \left\{ 1 + \frac{\alpha_{s}(1/r)}{4\pi} \left[a_{1} + 2\gamma_{E}\beta_{0} \right] + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{2} \left[a_{2} + \left(\frac{\pi^{2}}{3} + 4\gamma_{E}^{2} \right) \beta_{0}^{2} + \gamma_{E} \left(4a_{1}\beta_{0} + 2\beta_{1} \right) \right] + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{3} \left[\frac{16\pi^{2}}{3} C_{A}^{3} \ln \frac{C_{A}\alpha_{s}(1/r)}{2} + \tilde{a}_{3} \right] + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{4} \left[a_{4}^{L2} \ln^{2} \frac{C_{A}\alpha_{s}(1/r)}{2} + a_{4}^{L} \ln \frac{C_{A}\alpha_{s}(1/r)}{2} + \tilde{a}_{4} \right] + \cdots \right\}$$

The energy

$$E_{0}(r) = -\frac{C_{F}\alpha_{s}(1/r)}{r} \left\{ 1 + \frac{\alpha_{s}(1/r)}{4\pi} \left[a_{1} + 2\gamma_{E}\beta_{0} \right] + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{2} \left[a_{2} + \left(\frac{\pi^{2}}{3} + 4\gamma_{E}^{2} \right) \beta_{0}^{2} + \gamma_{E} \left(4a_{1}\beta_{0} + 2\beta_{1} \right) \right] + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{3} \left[\frac{16\pi^{2}}{3} C_{A}^{3} \ln \frac{C_{A}\alpha_{s}(1/r)}{2} + \tilde{a}_{3} \right] + \left(\frac{\alpha_{s}(1/r)}{4\pi} \right)^{4} \left[a_{4}^{L2} \ln^{2} \frac{C_{A}\alpha_{s}(1/r)}{2} + a_{4}^{L} \ln \frac{C_{A}\alpha_{s}(1/r)}{2} + \tilde{a}_{4} \right] + \cdots \right\}$$

Brambilla Pineda Soto Vairo **PRD60** (1999) Brambilla Garcia Soto Vairo **PLB647** (2007)

Physical picture

• Past studies based mainly on phenomenological potential models or lattice computations of the free energy

Kaczmare k et al. 2003

